ABCD is a parallelogram, in which
∠A=60o.⇒ ∠A+∠B=180o [ Sum of adjacent angles of parallelogram are supplementary ]
⇒ 60o+∠B=180o.
∴ ∠B=120o.
⇒ ∠D=∠B=120o [ Opposite angles of parallelogram are equal ]
⇒ ∠A=∠C=60o [ Opposite angles of parallelogram are equal ]
AP bisects ∠A
∴ ∠DAP=∠PAB=30o.
BP bisects ∠B
∴ ∠CBP=∠PBA=60o
In △PAB,
⇒ ∠PAB+∠PBA+∠APB=180o.
⇒ 30o+60o+∠APB=180o
⇒ ∠APB=90o.
In △PBC,
⇒ ∠PBC+∠PCB+∠BPC=180o.
⇒ 60o+60o+∠BPC=180o.
⇒ ∠BPC=60o
In △ADP,
⇒ ∠PAD+∠ADP+∠APD=180o.
⇒ 30o+120o+∠APD=180o.
⇒ ∠APD=30o.
In △PBC,
⇒ ∠BPC=∠CBP=60o. [ linear angles are supplementary ]
⇒ BC=PC [ Sides opposite to equal angles of a triangle are equal ] ----- ( 1 )
In △ADP,
⇒ ∠APD=∠DAP=30o.
⇒ AD=DP [ Sides opposite to equal angles of triangle are equal ]
But AD=BC [ Opposite sides of parallelogram are equal ]
⇒ So, BC=DP ----- ( 2 )
From ( 1 ) and ( 2 ), we get
⇒ DP=PC
⇒ P is the mid-point of CD