wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is a point of DC such that CE = 2 DE and F is the point of BC such that BF = 2 FC. Prove that:
(i)ar(ADEG)=ar(GBCE)(ii)ar(EGB)16ar(ABCD)(iii)ar(EFC)=12ar(EBF)(iv)ar(EGB)=32ar(EFC)
(v) Find what portion of the ara of parallelogram is the area of EFG.

Open in App
Solution

Construction : Draw EPABandEQBC

Proof : We have, AG = 2GB and CE = 2DE and BF = 2FC
ABGB=2GBandCDDE=2DEandBCFC=2FCAB=3BGandCD=3DE and BC=3FCGB=13AB and DE=13CD and FC=13BC
(i)ar(ADEG)=12(AG+6DE)×EPar(ADEG)=12(23AB+13CD)×EPar(ADEG)=12(23AB+13B)×EPar(ADEG)=12×AB×EPandar(GBCE)=12(GB+CE)×EPar(GBCE)=12(13AB+23CD)×EPar(GBCE)=12[13AB+23AB]×EPar(GBCE)=12×AB×EP
Compare equation (ii) and (iii) ar (ADEG) = ar(GBCE)
(ii)ar(EGB)=12×GB×EPar(EGB)=12×13AB×EP=16AB×EP=16ar(||gmABCD)
(iii)ar(EFC)=12×FC×EQandar(EBF)=12×BF×EQar(EBF)=12×BF×EQar(EBF)=12×2FC×EQ
Compare equation (iv) and (v)
ar(EFC)=12×ar(EBF)(iv)from(ii)partar(EGB)=16ar(||gmABCD)From(iii)Partar(EFC)=12ar(EBF)ar(EFC)=12ar(EBF)ar(EFC)=13ar(EBC)ar(EFC)=13×12CE×EP=13×12×22D×EP=16×23×ar(||gmABCD)ar(EFC)=23×ar(EGB)ar(EGB)=32ar(EFC)(v)ar(EFG)=ar(trap.BGEC)ar(BGF)
Now, ar (trap. BGEC) =12(GB+EC)×EP
=12(13AB+23CD)×EP=12AB×EP=12ar(||gmABCD)ar(EFC)=19ar(||gmABCD)
And ar(BGF)=12BF×GR
12×23BC×GR=23×12BC×GR=23×ar(GBC)=23×12GB×EP=13×13AB×EP=19AB×EP=19ar(||gmABCD)
From (vii)
ar(EFG)=12ar(||gmABCD)19ar(||gmABCD)19ar(||gmABCD)=518ar(||gmABCD)


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon