ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is a point of DC such that CE = 2 DE and F is the point of BC such that BF = 2 FC. Prove that:
(i)ar(ADEG)=ar(GBCE)(ii)ar(△EGB)−16ar(ABCD)(iii)ar(△EFC)=12ar(△EBF)(iv)ar(△EGB)=32ar(△EFC)
(v) Find what portion of the ara of parallelogram is the area of △EFG.
Construction : Draw EP⊥ABandEQ⊥BC
Proof : We have, AG = 2GB and CE = 2DE and BF = 2FC
⇒AB−GB=2GBandCD−DE=2DEandBC−FC=2FC⇒AB=3BGandCD=3DE and BC=3FC⇒GB=13AB and DE=13CD and FC=13BC
(i)ar(ADEG)=12(AG+6DE)×EP⇒ar(ADEG)=12(23AB+13CD)×EP⇒ar(ADEG)=12(23AB+13B)×EP⇒ar(ADEG)=12×AB×EPandar(GBCE)=12(GB+CE)×EP⇒ar(GBCE)=12(13AB+23CD)×EP⇒ar(GBCE)=12[13AB+23AB]×EP⇒ar(GBCE)=12×AB×EP
Compare equation (ii) and (iii) ar (ADEG) = ar(GBCE)
(ii)ar(△EGB)=12×GB×EP⇒ar(△EGB)=12×13AB×EP=16AB×EP=16ar(||gmABCD)
(iii)ar(△EFC)=12×FC×EQandar(△EBF)=12×BF×EQ⇒ar(△EBF)=12×BF×EQ⇒ar(△EBF)=12×2FC×EQ
Compare equation (iv) and (v)
ar(△EFC)=12×ar(△EBF)(iv)from(ii)partar(△EGB)=16ar(||gmABCD)From(iii)Partar(△EFC)=12ar(△EBF)⇒ar(△EFC)=12ar(△EBF)⇒ar(△EFC)=13ar(△EBC)⇒ar(△EFC)=13×12CE×EP=13×12×22D×EP=16×23×ar(||gmABCD)⇒ar(△EFC)=23×ar(△EGB)⇒ar(△EGB)=32ar(△EFC)(v)ar(△EFG)=ar(trap.BGEC)−ar(△BGF)
Now, ar (trap. BGEC) =12(GB+EC)×EP
=12(13AB+23CD)×EP=12AB×EP=12ar(||gmABCD)ar(△EFC)=19ar(||gmABCD)
And ar(△BGF)=12BF×GR
12×23BC×GR=23×12BC×GR=23×ar(△GBC)=23×12GB×EP=13×13AB×EP=19AB×EP=19ar(||gmABCD)
∴ From (vii)
ar(△EFG)=12ar(||gmABCD)−19ar(||gmABCD)−19ar(||gmABCD)=518ar(||gmABCD)