GivenABCD is a parallelogram in which AG=2GB,CE=2DE and BF=2FC
1) Since ABCD is a parallelogram we have AB∥CD and AB=CD
∴BG=13AB and DE=13AB
∴BG=DE
∴ADEH is a parallelogram (since AH∥DE and AD∥HE)
Area of parallelogram ADEH=area of parallelogram BCIG ....(1)
Since DE=BG and AD=BC parallelogram with corresponding sides are equal
we have area(△HEG)=area(△EGI) ....(2)
Diagonals of a parallelogram divide it into two equal areas.
From (1) and (2) we get
Area of parallelogram ADEH+area(△HEG)=area of parallelogram BCIG+area(△EGI)
∴ Area of parallelogram ADEG=Area of parallelogram GBCE
2)Height of parallelogram ABCD and △EGB is the same
Base of △EGB=13AB
Area of parallelogram ABCD=h×AB area(△EGB)=12×h×13AB=16h×AB
Area(△EGB)=16Area of parallelogram ABCD
3)Let the distance between EH and CB=x
area(△EBF)=12×BF×x=12×23BC×x=13×BC×x
and area(△EFC)=12×CF×x=12×13BC×x=12Area of (△EBF)
⇒ Area(△EFC)=12×Area(△EBF)