wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a parallelogram, G is the point on AB such that AG=2GB,E is a point of DC such that CE=2DE and F is the point of BC such that BF=2FC. Prove
that:
ar(ADEG)=ar(GBCE)

Open in App
Solution

Let ABCD be a rectangle (a type of parallelogram)
AG=2GB
CE=2DE
BF=2FC
a) as(ADEG)=as(GBCE)
CD=AB=lm
In ADEG(trapezium)
AD=b
AG=23 and DE=13l
asADEG=12×[sumof||sides×Distanceb(w)]
=12×(23l+13l)×b
=12×l×b
In GBCE
BC=b
GB=13l,EC=23l
as GBCE=12×(13l+23l)×b
=12×l×b
as ADGE=asGBCE,H.P
b) EGB=16(ABCD)
as(ABCD)=l×b(AB×BC)
ar(EGB)=ar(EGB)ar(EXB)a(EXG)
=12×(EX)×(XB)12×X(EX)×(XG)
12×b×23l12×b×13l
=12×b×l(23l3)
ar(EGB)=12×13×b×l=16×ar(ABCD)hence prove
C) ar(EFG)=12ar(EFG)
12×(EC)×(CF)=12[ar(EFG)ar(EFC)]
(1+12)(12×(EC)×(FC)) =12ar(12(EC)×BC)
32×12×23l×13b =12×12×23l×b
22×2×2×3lb =22×2×3lb
d) as (EGB)=12ar(EFG)
16ar(ABCD)=12(12×29ar(ABCD))
16=12×13×13
Not True
ar23ar(EGB)=ar(EFC)
or13ar(EGB)=12ar(EFG)
e) arEFG=ar(EGB)+(BFE)=(16+29)ar(ABCD)
=(718)ar(ABCd)

1332016_1068804_ans_0da236bf2e334cf582844b11530c401f.png

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon