Question 102
ABCD is a parallelogram in which AE is perpendicular to CD is shown in the given figure. Also, AC = 5 cm, DE = 4 cm and area of ΔAED=6 cm2.
Find the perimeter and area of parallelogram ABCD.
Given, area ΔAED=6 cm2 and AC = 5 cm and DE = 4 cm
∴ Area of ΔAED=12×DE×AE [∵ area of triangle =12×base×height]
⇒12×4×AE=6⇒AE=6×24⇒AE=3 cm
Now, in right angled ΔAEC, AE = 3 cm and AC = 5 cm
So, (EC)2=(AC)2−(AE)2 [by Pythagoras theorem]
⇒(EC)2=52−32=25−9⇒EC=√16⇒EC=4 cm∵DE+EC=DC⇒DE+EC=DC⇒DC=4+4=8 cm
∵ABCD is a parallelgoram.
So, AB = DC = 8 cm
Now, in right angled ΔADE,AD2=AE2+ED2
⇒AD2=32+42=9+16⇒AD=√25⇒AD=5 cm
So, AD = BC = 5 cm [∵ ABCD is a parallelogram]
∴ Perimeter of paralelogram ABCD =2(l+b)=2(DC+AD)=2(8+5)=2×13=26 cm
Area of parallelogram ABCD =Base×Height=DC×AE=8×3=24 cm2