ABCD is a parallelogram. P is the mid point of AB. BD and CP intersect at Q such that CQ:QP=3:1.Ifar(△PBQ)=10cm2
Find the ara of parallelogram ABCD.
In ||gm ABCD, P is mid point on AB, PC and BD intersect each otehr at Q
CQ: QP = 3 :1
ar(△PBQ)=10cm2
BD is its diagonal
∴ar(△ABD)=ar(△BCD)=12ar||gmABCD∴ar(||gmABCD)=2ar(△ABD)In△PBCCQ:QP=3:1∴△PBQand△CQB have same vertice B
∴3×area△PBQ=ar(△CBQ)⇒Area(△CBQ)=3×10=30cm2∴ar(△PBC)=30+10=40cm2
Now △ABDand△PBC are between the same parallel but base PB=12AB
∴ar(△ABD)=2ar(△PBC)=2×40=80cm2Butar(||gmABCD)=2ar(△ABD)=2×80=160cm2