wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a parallelogram. Points P, Q, R and S are points on the side such that seg AP seg CR seg DS
Prove that PQRS is a parallelogram (see fig. 5.12)

Open in App
Solution

Given: seg AP seg BQ seg CR seg DS BQ = CR = DS

We have:
seg AB seg CD (Opposite sides of parallelogram ABCD are equal.)
Subtracting seg AP from both sides, we get:
seg AB - seg AP seg CD - seg AP
or,
seg AB - seg AP seg CD -seg CR (seg AP seg CR)
or,
seg BP seg DR ...(1)

Again, we have:
seg AD seg BC (Opposite sides of parallelogram ABCD are equal.)
Subtracting seg BQ from both sides, we get:
seg AD -seg BQ seg BC - seg BQ
or,
seg AD - seg DS seg BC - seg BQ ( seg DS seg BQ)
or,
seg AS seg CQ ...(2)

Consider DSR and BQP,
seg DS seg BQ (Given)
SDR = QBP (Opposite angles of parallelogram ABCD are equal.)
seg DR seg BP [Using (1)]


By SAS congruency, DSR BQP
seg SRseg PQ (by c.s.c.t) ....(3)

Consider APS and RCQ
seg AP seg RC (Given)
SAP = QCR (Opposite angles of parallelogram ABCD are equal.)
seg AS seg CQ [Using (2)]


By SAS congruency, SAP QCR.
seg SP seg RQ (by c.s.c.t) ...(4)
From eq (1) , (2), (3) & (4) we can say that
Since, opposite sides of quadrilateral PQRS are equal,
Hence, PQRS is a parallelogram.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Parallelograms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon