The correct option is
C 83×ar(△AXY)X and
Y are the mid-points of sides
BC and
CD.
In △BCD,
XY∥BD and XY=12BD {From the mid point theorem}
⇒ ar(△CYX)=14ar(△DBC) {property of triangle having mid points}
⇒ ar(△CYX)=18ar(∥gmABCD) [ Area of parallelogram is twice the area of triangle made by diagona ] --- ( 1 )
Since, parallelogram ABCD and △ABX are between the same parallel lines AD and BC and BX=12BC.
⇒ ar(△ABX)=14ar(∥gmABCD) ----- ( 2 )
Similarly, ar(△AYD)=14ar(∥gmABCD) ----- ( 3 )
Now, ar(△AXY)=ar(∥gmABCD)−[ar(△ABX)+ar(△AYD)+ar(△CYX)]
=ar(∥gnABCD)−[14ar(∥gmABCD+14ar(∥gmABCD)+18ar(∥gmABCD)] [ From ( 1 ) ( 2 ) and ( 3 ) ]
=ar(∥gmABCD)−58(∥gmABCD)
⇒ ar(△AXY)=38ar(∥gmABCD)
∴ ar(∥gmABCD)=83×ar(△AXY)