Since ABCD is a parallelogram then AB∥CD and AD∥BC
Since AB∥CD and AC is a transversal, so
∠PAR=∠QCR(alternate interior angles are equal).....(1)
Since ABCD is a parallelogram,then AB=CD and AD=BC, as opposite sides of parallelogram are equal.
let AB=CD=x
So, AP=3x5 and PB=2x5 as AP:PB=3:2
and CQ=4x5 and QD=x5 as CQ:QD=4:1
In △CQR and △PAR
∠QCR=∠PAR using (1)
and ∠QRCR=∠PRA (vertically opposite angles)
⇒△CQR∼△PAR by AA similarity.
⇒CRAR=CQAQ=QRPR(corresponding sides of similar triangles are proportional)
⇒CRAR=CQAQ=4x53x5=43
⇒CRAR+1=43+1=73
⇒CR+ARAR=CAAR=73
⇒7AR=3AC
⇒AR=37AC