Construction Extend AB to E and draw a line CE parallel to AD.
Proof Since, AD||CE and transversal AE cuts them at A and E, respectively.
∴ ∠A+∠E=180∘ [since, sum of cointerior angles is 180∘]
⇒ ∠A=180∘−∠E
Since , AB || CD and AD || CE
So, quadrilateral AECD is a parallelogram.
⇒ AD=CE⇒BC=CE[∵AD=BC,given]
Now, in ΔBCE CE=BC [proved above]
⇒ ∠CBE=∠CEB [opposite angles of equal side are equal]
⇒ 180∘−∠B=∠E [∵∠B+∠CBE=180∘]
⇒ 180∘−∠E=∠B . . . . . . . . (ii)
From Eqs. (i) and (ii) ∠A=∠B Hence proved.