Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side.
Therefore,
In ΔAOB, AB < OA+OB ……….(i)
In ΔBOC, BC < OB+OC ……….(ii)
In ΔCOD, CD < OC+OD ……….(iii)
In ΔAOD, DA < OD+OA ……….(iv)
Adding eq. (i), (ii), (iii) and(iv),
⇒ AB + BC + CD + DA < OA + OB + OB + OC + OC + OD + OD +OA
⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC +2OD
⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO +OB)]
⇒ AB + BC + CD + DA < 2(AC +BD)
Hence, it is proved.