ABCD is a rectangle, if ∠BPC=124∘
Calculate ∠BAP
62∘
Diagonals of a rectangle are equal and bisect each other.
Let ∠PBC=∠PCB=x
⇒∠PBC+∠BPC+∠PCB=180∘
⇒124∘+x+x=180∘
⇒2x=180∘−124∘
⇒2x=56∘
⇒x=28∘
⇒∠PBC=28∘
⇒∠PBC=∠ADP [Alternate angles]
⇒∠ADP=28∘
⇒∠APB=180∘−124∘=56∘
⇒PA=PB
⇒∠BAP=12×(180∘−∠APB)
⇒∠BAP=12×(180∘−56∘)
⇒∠BAP=12×124∘=62∘