ABCD is a rectangle. Taking AD as a diameter, a semicircle AXD is drawn which intersects the diagonal BD at X. If AB=12cm, AD=9cm, T he values of BD and BX are
A
BD=21cmandBX=5.4cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
BD=9.6cmandBX=15cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
BD=15cmandBX=9.6cm.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
BD=25cmandBX=5.5cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BBD=15cmandBX=9.6cm. Given−ABCDisarectangleandAXDisasemicirclewithinABCD.ThediagonalBDintersectsAXDatX.AB=12cm,BD=9cm.Tofindout−thevaluesofBD=?BX=?.Solution−Actually,BDisatangenttothecirclewithADasdiameterandDXisasecanttothesamecircle.ABintersectsthegivencircleatX.Also∠DAB=90osinceABCDisarectangle.So,byPytagorastheorem,wehaveBD=√AD2+AB2cm=√92+122cm=15cm.Again,byapplyingtangent−secantrule,wehaveBD×BX=AB2⟹BX=AB2BD=12215cm=9.6cm.∴Ans−OptionC.