The correct option is
A 3−i2 or
1−32iLet
ABCD be the rhombus and
M be the point of intersection of the diagonals
AC and
BDLet point D be z1=1+i and point M be z2=2−i
Also, let point A be z3
Then, z2−z1=1−2i and |z2−z1|=√5=MD
As given, AC=12BD⇒AM=12DM⇒AM=√52
⇒AD=|z3−z1|=√DM2+AM2=
⎷(√5)2+(√52)2=52
Therefore, in △AMD,
cosθ=√552=2√5 and sinθ=√5252=1√5
Now, by rotation of complex numbers we know that z3−z1z2−z1=|z3−z1||z2−z1|eiθ
(anticlockwise rotation)
⇒z3−(1+i)1−2i=52√5(cosθ+isinθ)
⇒z3−(1+i)1−2i=1+i2 (using values of cosθ and sinθ)
⇒z3=2+i2(1−2i)+(1+i)⇒z3=3−i2
Similarly , taking clockwise rotation we get another possible position of possible position of A as
z3−z1z2−z1=|z3−z1||z2−z1|e−iθ
⇒z3=(1−i2)(1−2i)+(1+i)⇒z3=1−32i
So, A represents the complex numbers 3−i2 or 1−32i