We know that the diagonals of a rhombus bisect each other at right angles.
∴ BO=12BD=(12×16) cm=8cm
AB=10 cm and ∠AOB=90°
From right ∆OAB:
AB2=AO2+BO2
⇒AO2=(AB2–BO2)
⇒AO2=(10)2−(8)2 cm2
⇒AO2=(100−64)cm2
=36 cm2
⇒AO=√36 cm=6 cm
∴ AC=2×AO=(2×6)cm=12 cm