ABCD is a square and ABRS is a rhombus. if ∠SAD=120∘,
find: (¡) ∠ASD (¡¡) ∠SRB
Given:
ABCD is a square.
ABRS is a rhombus.
∠SAD=120∘
Lets form a diagram as per instructions,
Lets take ΔASD,
AS=AD [Since, ABCD is a square and ABSR is a rhombus with side AB]
⇒ΔASD is an isosceles triangle.
⇒∠ASD=∠ADS
⇒∠ASD+∠ADS+∠SAD=180∘
⇒∠ASD+∠ASD+120∘=180∘
⇒2∠ASD=180∘−120∘
⇒2∠ASD=60∘
⇒∠ASD=60∘2
⇒∠ASD=30∘ ---(i)
It is given that,
∠SAD=120∘
⇒∠DAB+∠SAB=120∘
⇒90∘+∠SAB=120∘ [Since, ABCD is a square.]
⇒∠SAB=120∘−90∘
⇒∠SAB=30∘
In a Rhombus, opposite angles are equal.
⇒∠SAB=∠SRB=30∘
∴∠SRB=30∘ ---(ii)