The correct option is D a+b+y1=8
Given : A(2,0,0),B(0,4,0) and CD lies on the line x−11=y−22=z−33
Let C≡(λ1+1,2λ1+2,3λ1+3)
and D≡(λ2+1,2λ2+2,3λ2+3)
CD=√14
⇒(λ1−λ2)2+4(λ1−λ2)2+9(λ1−λ2)2=14
⇒λ1−λ2=±1
Taking negative sign, we get
λ2=1+λ1
∴C≡(λ1+1,2λ1+2,3λ1+3) and
D≡(λ1+2,2λ1+4,3λ1+6)
Let centroid of tetrahedron be G≡(α,β,γ)
∴α=2+0+λ1+1+λ1+24
⇒4α=5+2λ1
Similarly, 4β=10+4λ1
and 4γ=9+6λ1
Thus, locus of the centroid of tetrahedron is 4x−52=4y−104=4z−96
⇒x−5412=y−521=z−9432
⇒x−5412−12=y−521−12=z−9432−12
⇒x−321=y−32=z−33
∴y1=3=z1,a=2 and b=3
Now, a+b=2+3=5
y1+z1=3+3=6
y1−z1=3−3=0
and a+b+y1=2+3+3=8