ABCD is a trapezium.
Join DY and produce it to meet AB produced at P.
In △BYP and △CYD
⇒ ∠BYD=∠CYD [ Vertically opposite angles ]
DC∥AP and BC is the transversal.
⇒ ∠DCY=∠PBY [ Alternate angles ]
∴ △BYP≅△CYD [ By ASA congruence rule ]
⇒ DY=YP and DC=BP [ CPCT ]
Y is the mid point of AD
∴ XY∥AP and XY=12×AP [ Mid -point theorem ]
⇒ XY=12×(AB+BP)
⇒ XY=12×(AB+DC)
⇒ XY=12×(50+30)
⇒ XY=12×80
∴ XY=40cm
Since X and Y are the mid points of AD and BC respectively .
∴ Trapezium DCYX and XYBA are of same height, say hcm
Now,
⇒ ar(trap.DCYX)ar(trap.XYBA)=12(DC+XY)×h12(AB+XY)×h=30+4050+40=7090=79
⇒ 9ar(trap.DCXY)=7ar(trap.XYBA)
∴ ar(trap.DCYX)=79ar(trap.XYBA)