is a trapezium.
respectively.
To find out- The ratio of arABFE and arEFCD)
Construction- A perpendicular mn is dropped from m on DC to AB.
mn meets AB at n and intersects EF at O.
Solution-
Let the height of the trapezium ABCD be h.
∴ its area =12×(AB+CD)×h=12×(a+b)×h ..........(i)
Since E and F are the mid points of AD and BC, the line EF divides the height of the trapezium into two equals.
∴mO=On=h2 .........(ii)
Let EF=x
∴arABFE=12×(a+x)×h2=h4×(a+x) ......(from (i) )
and arDCFE=12×(b+x)×h2=h4×(b+x) ,,,,,,,,,,,,(iii)
Now arABFE+arDCFE=arABCD
⇒h4×(a+x)+h4×(b+x)=h2×(a+b) .....[from (i), (ii) and (iii)]
⇒a+b2+x=a+b
⇒x=a+b2
Substituting this value of x (i) and (ii), we have
arABFE=14h(a+a+b2)=18h(3a+b)
And arDCFE=14h(b+a+b2)=18h(a+3b)
∴arABFE:arDCFE=18h(3a+b):18h(a+3b)=(3a+b):(a+3b)