The correct option is
C 44 sq. unitsGiven-
The vertices of a polygon ABCDE are
A(−1,0)=A(x1,y1),B(4,0)=B(x2,y2),C(4,4)=C(x3,y3),D(0,7)=D(x4,y41)
and E(−6,2)=E(x5,y5).
To find out-
A(□ABCDE)
Solution-
We join AD & AC.
Then we get ΔABC,ΔACD & ΔADE.
So, A(□ABCDE)=A(ΔABC)+A(ΔACD)+A(ΔADE).
We shall apply the formula
A(Δ)=12{x1(y2−y3)+x2(y3−y1)+x3(y1−y2)}.
So A(ΔABC)=12{x1(y2−y3)+x2(y3−y1)+x3(y1−y2)}
=12{−1(0−4)+4(4−0)+4(0−0)}units=10sq.units,
A(ΔACD)=12{x1(y3−y4)+x3(y4−y1)+x4(y1−y3)}
=12{−1(4−7)+4(7−0)+0(0−4)}sq.units=312 sq.units
A(ΔADE)=12{x1(y4−y5)+x4(y5−y1)+x5(y1−y4)}
=12{−1(7−2)+0(−6+1)−6(0−7)} sq.units
=372 sq.units.
∴A(□ABCDE)=(10+312+372)sq.units=44 sq.units.