Let the variable line equation be px+qy+r=0 ......(1)
and n given points be
(a,a),(a+1,a+2),(a+2,a+4),...
i.e., (a+i−1,a+2(i−1)); i=1,2,3,4,...,n
Since, the algebraic sum of perpendiculars drawn from these n points on the variable line (1) is always 0,
∴n∑i=1p(a+i−1)+q(a+2i−2)+r√p2+q2=0
⇒n∑i=1[p(a+i−1)+q(a+2i−2)+r]=0
⇒pn∑i=1(a+i−1)+qn∑i=1(a+2i−2)+rn=0
⇒pn∑i=1a+i−1n+qn∑i=1a+2i−2n+r=0
Hence the line (1) always passes through a fixed point
(n∑i=1a+i−1n,n∑i=1a+2i−2n)
But the fixed point is given that (132,11)
∴n∑i=1a+i−1n=132
and n∑i=1a+2i−2n=11
⇒a+1n⋅(n−1)n2=132 ⋯(2)
and a+2n⋅(n−1)n2=11 ⋯(3)
Solving the above two equations, we get
a=2 and n=10