The correct option is
D √2consider first curve y=x2
Differentiate w.r.t. x, we get,
dydx=2x
Let common tangent touches this curve at x=a
∴y=x2=a2
Thus coordinates of point of contact are (a,a2)
Thus, slope of tangent is m1=dydx=2x
∴m1=2a (1)
Consider second curve x2+y+1=0
Differentiate w.r.t x, we get,
2x+dydx=0
∴dydx=−2x
Let common tangent touches this curve at x=b
∴b2+y+1=0
∴y=−b2−1
Thus, coordinates of point of contact are (b,−b2−1)
Thus, slope of tangent is, m2=dydx=−2x
∴m2=−2b
Now, this is common tangent to both the curves.
∴m1=m2
∴2a=−2b
∴a=−b (2)
Thus, slope of tangent is given by,
m=y2−y1x2−x1
∴m=−b2−1−a2b−a
From equation (2),
∴m=−(−a)2−1−a2(−a)−a
∴m=−a2−1−a2−2a
∴m=−2a2−1−2a
∴m=2a2+12a (3)
Equate (1) and (3), we get,
2a2+12a=2a
4a2=2a2+1
∴2a2=1
∴a2=12
∴a=1√2
Thus, from equation (1),
Slope of tangent is, m=2×1√2
∴m=√2×√2√2
∴m=√2