AC and BC are two equal chords of a circle with diameter AB forming a ΔABC as shown in the figure. If the equal chords have length 20 cm, then the area of the circle is equal to
200 π cm2
In the given above figure, triangle ABC is isosceles (AC = BC) given
∠ACB=90∘ (angle subtended by diameter AB on circumference)
∠A+∠B+90∘=180∘ (sum of angles of a triangle)
2x+90∘=180∘(∠A=∠B. say x as triangle is isosceles)
x=45∘
Now, angle of tirangle ABC are 45∘,45∘,90∘
⇒sin(45):sin(45):sin(90)
⇒1√2:1√2:1
⇒1:1:√2
So, sides AC, CB, AB will be in ratio 1:1:√2
So, the corresponding sides will be calculated as
45∘45∘90∘1:1:√2ACCBAB↓↓↓20cm20cm20√2cm
Diameter AB=20√2cm, radius =10√2cm
Area =πr2=π(10√2)2=200π cm2