i) atanӨ + btanΦ = a.sinӨ/cosӨ + b.sinΦ/cosΦ
= asinӨ/{acosΦ/b} + bsinΦ/cosΦ [From the given data, cosӨ = {acosΦ/b}]
= bsinӨ/cosΦ + bsinΦ/cosΦ
= b{sinӨ + sinΦ}/cosΦ
= b[2sin{(Ө + Φ)/2}cos{(Ө - Φ)/2}]/cosΦ [Application of Sum-Product rule of trigonometry identities]
= b[{sin{(Ө + Φ)/2}/cos{(Ө + Φ)/2}*2cos{(Ө - Φ)/2}cos{(Ө + Φ)/2}]/cos(Φ)
= b[tan{(Ө + Φ)/2}{cosӨ + cosΦ}]/cosΦ
= b[tan{(Ө + Φ)/2}{cosӨ/cosΦ + 1}
= b[tan{(Ө + Φ)/2}{a/b + 1} [From the given one, cos(Ө)/cos(Φ) = a/b]
= (a + b)tan{(Ө + Φ)/2} = Right side [Proved]