The correct option is A ln k2k1=EaR(1T1−1T2)
Arrhenius equation:
k=Ae−EaRT
Taking natural log on both side,
ln k=ln(Ae−EaRT)
ln k=ln A−EaRT
Let us consider, for a particular reaction k1 and k2 are the rate constant at temperature T1 and T2.
∴
ln k1=ln A−EaRT1.....eqn(1)
ln k2=ln A−EaRT2.....eqn(2)
Subtracting equation (1) from (2) we get,
ln k2−ln k1=−EaRT2+EaRT1
ln k2k1=EaRT1−EaRT2
ln k2k1=EaR(1T1−1T2)
Option (a) is correct