The correct option is
D a<34b
Let G be the point of intersection of medians of ΔABC.
Sum of any two sides of a triangle is greater than the third side.
∴ BG + GA > AB …..(i)
and, CG + GA > AC …..(ii)
and, BG + CG > BC …..(iii)
Adding (i), (ii) and (iii), we get
BG + GA + CG + GA + BG + CG > AB + AC + BC
⇒ 2(BG + GA + CG) > AB + AC + BC …..(iv)
The point of intersection of medians (centroid) divides each median in the ratio 2 : 1.
∴BG=23BE,CG=23CFandAG=23AD
|RightarrowBG+GA+CG=23(BE+CF+AD) ....(v)
From (iv) and (v), we get
2(23a)>b (∵BE+CF+AD=a and AB + BC + CA = b)
⇒43a>b
⇒a>34b
Hence, the correct answer is option (d).