The correct option is C
3√3+√5−2√15+4
22(2+√3)+√5×(2+√3)−√5(2+√3)−√5=22(2+√3−√5)(2+√3)2−(√5)2=22+(2+√3−√5)(22)+(√3)2+2×2×√3−5=22(2+√3−√5)2+4√3×2−4√32−4√3=22(2+√3−√5)(2−4√3)(2)2−(4√3)2=22(2+√3−√5)(2−4√3)4−48=22(2+√3−√5)×2(1−2√3)−44=22(2+√3−√5)×2(1−2√3)−44=−1(2−4√3+√3−6−√5+2√15)=−1(−4−3√3−√5+2√15)=4+3√3+√5−2√15
Hence, option c is correct.