Given (5x+2)2+(5x−2)2(5x+2)2−(5x−2)2=1312
Applying the formulae, (a+b)2+(a−b)2=2(a2+b2)
and (a+b)2−(a−b)2=4ab where a=5x;b=2
2((5x)2+22)4×(5x)×2=1312
25x2+420x=1312
On cross multiplying and simplifying,
75x2−65x+12=0
75x2−20x−45x+12=0
5x(15x−4)−3(15x−4)=0
(5x−3)(15x−4)=
x={35,415}={0.6,0.27}
Hence, m=0.6