aij=1,-x,2x+1i=j|i-j|=1otherwiseA=[aij]3×3.f(x)=Det(A). Then find the sum of local maximum and minimum values of fx.
2027
−2027
8827
-8827
Explanation for the correct option:
Finding the sum of local maximum and minimum values of x:
It is given that aij=1,-x,2x+1i=j|i-j|=1otherwise
And f(x) is the determinant of aij
f(x)=1-x2x+1-x1-x2x+1-x1=4x3–4x2–4xf’(x)=4(3x2–2x–1)f’(x)=4(x-1)x+13f(1)=4–4–4=-4f-13=-427–49+43=(-4-12+36)27=20272027–4=(20-108)27=-8827
Hence, the correct answer is option (D).