Conditions on the Parameters of Logarithm Function
All the pairs...
Question
All the pairs (x,y) that satisfy the inequality 2√sin2x−2sinx+5⋅14sin2y≤1 also satisfy the equation :
A
sinx=2siny
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2sinx=siny
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx=|siny|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2|sinx|=3siny
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Csinx=|siny| 2√sin2x−2sinx+5⋅14sin2y≤1 ⇒2√sin2x−2sinx+5≤22sin2y⇒√sin2x−2sinx+5≤2sin2y⋯(1)
√sin2x−2sinx+5=√(sinx−1)2+4⇒√(sinx−1)2+4∈[2,2√2] But 2sin2y∈[0,2] Equation (1) holds true only when √sin2x−2sinx+5=2sin2y=2 ⇒(sinx−1)2+4=4⇒sinx=1 and 2sin2y=2⇒|siny|=1 ⇒sinx=|siny|