The correct option is D b∈(−127,∞)
Let x1,x2,x3 are the roots of x3−x2+ax+b=0
x1+x2+x3=1
⇒(A−d)+A+(A+d)=1, (d≠0)
⇒A=13
x1x2+x2x3+x3x1=a
⇒(A−d)A+A(A+d)+(A+d)(A−d)=a
⇒3A2−d2=a
⇒3(13)2−d2=a
⇒a=13−d2<13
⇒a∈(−∞,13)
x1x2x3=−b
⇒(A−d)A(A+d)=−b
⇒13(19−d2)=−b
⇒b=d23−127>−127
⇒b∈(−127,∞)