Let x=11n⇒xn=1
∴xn−1=0
or xn−1=(x−α0)(x−α1)(x−α2)...(x−αn−1)=∏n−1i=0(x−αi)
On taking logarithm both sides, we get
loge(xn−1)=∑n−1i=0loge(x−αi)
On differentiating both sides w.r.t. x, we get
nxn−1xn−1=∑n−1i=0(1x−αi)
On putting x=3 we get
n3n−13n−1=∑n−1i=0(13−αi)
Now, ∑n−1i=0αi3−αi=∑n−1i=0(−1+33−αi)
=−∑n−1i=01+3∑n−1i=013−αi
=−n+3n3n−13n−1
=−n+n3n3n−1
=−n3n+n+n3n3n−1
=n3n−1