The correct option is D has real roots which are opposite in signs
∵ Roots are real and distinct
∴ D>0
⇒b2−4ac>0 & αβ<0
αβ=ca
⇒ca<0⇒ac<0
α+β=−ba
⇒α(x−β)2+β(x−α)2=0
⇒(α+β)x2−4αβx+αβ2+α2β=0
⇒(α+β)x2−4αβx+αβ(α+β)=0
⇒−bax2−4cax+ca(−ba)=0
⇒abx2+4acx+bc=0
D=16a2c2−4ab2c=4ac(4ac−b2)
∵4ac<0 & 4ac−b2<0
∴D>0
⇒abx2+4acx+bc=0
Let α′.β′ are roots
⇒α′.β′=bcab=ca<0
⇒α′.β′<0
have two real roots of opposite signs.