The correct option is A A.P.
Let f(x)=ax4+bx3+cx2+dx+e
f′(x)=4ax3+3bx2+2cx+d
f′′(x)=12ax2+6bx+2c
f′′′(x)=24ax+6b
∵α,β,γ,δ are in A.P.,
∴24aα,24aβ,24aγ,24aδ are also in A.P.
⇒24aα+6b,24aβ+6b,24aγ+6b,24aδ+6b are in A.P.
∴f′′′(α),f′′′(β),f′′′(γ),f′′′(δ) are in A.P.