wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

α,β.γ,δ are eecentric angles of concyclic points of hyperbola, then cos(αβ)2sin(γδ)2+sin(α+β)2cos(γδ)2=

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosα+β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sinα+β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 0
cos(αβ2)sin(γδ2)+sin(α+β2)cos(γδ2)cos(αβ2)sin(γδ2)=sin(α+β2)cos(γδ2)cos(αβ2)cos(γδ2)=sin(α+β2)sin(γδ2)cos(AB2)=cosA2cosB2+sinA2sinB2sin(A+B2)=sinA2cosB2+sinB2cosA2sin(AB2)=sinA2cosB2sinB2cosA2cosα2cosβ2+sinα2sinβ2cosγ2cosδ2+sinγ2sinδ2=[sinα2cosβ2+sinβ2cosα2]sinγ2cosδ2sinδ2cosγ2
For LHS, divide numerator by [cosα2cosβ2] and denominator by [cosγ2cosδ2]
For RHS, divide numerator by [cosα2cosβ2] and denominator by [cosγ2cosδ2]
1+tanα2tanβ21+tanγ2tanδ2=⎢ ⎢ ⎢tanα2+tanβ2tanγ2tanδ2⎥ ⎥ ⎥tanγ2tanδ21+tanγ2tanδ2=[tanα2+tanβ2]1+tanα2tanβ2tan[γ2δ2]=tan[α2+β2]γδ=αβα+β+γ=0δ=α+β+γδ=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon