d = b - a for A.P., r = b / a for G.P.
Tn+2=a+(n+1)d=a+(n+1)(b−a)
= -na + (n + 1)b for A.P. .....(1)
Tn+2=arn+1=a.bn+1an+1=bn+1an for G.P. ...(2)
For getting Tn+2 foe H.P., replace a by 1a, and b by 1b in Tn+2
∴Tn+2 for H.P. = reciprocal of −n(1a)+(n+1)1b
or of (n+1)a−nbab
∴Tn+2=ab(n+1)a−nb for H.P. ....(3)
The above three terms are themselves in G.P.
∴(bn+1an)=[−na+(n+1)b].ab(n+1)a−nb
∴dfracb2n+1a2n+1=−na+(n+1)b(n+1)a−nb Cancelled ab
Cross multiply
(n+1)[ab2n+1−ba2n+1]=n(b2n+2−a2n+2)
or n+1n=b2n+2−a2n+2ab(b2n−a2n)