The correct option is
C 1√2(i21+i22)1/2The r.m.s current is defined as
Irms=√<i2>Now, i2=i21cos2ωt+i22sin2ωt+2i1i2cosωtsinωt
The mean value of i2 =<i2>=1T∫T0i2dt where T=2πω
So, <i2>=i2T∫T0cos2ωtdt+i22T∫T0sin2ωtdt+i1i2T∫T02cosωtsinωtdt
Integration for first term,
∫T0cos2ωtdt=12∫T02cos2ωtdt
=12∫T0[1+cos2ωt]dt using formula 2cos2A=1+cos2A
=12[t+sin2ωt2]T0=12[T+sin4π2−0−sin0] (use ωT=2π)
=T2
Integration for second term,
∫T0sin2ωtdt=12∫T02sin2ωtdt
=12∫T0[1−cos2ωt]dt using formula 2sin2A=1−cos2A
=12[t−sin2ωt2]T0=12[T−sin4π2−0+sin0] (use ωT=2π)
=T2
Integration for third term,
∫T02sinωtcosωtdt=∫T0sin2ωtdt=[−cos2ωt2]T0=−12[1−1]=0
<i2>=i212+i222+0
Thus, irms=√i21/2+i22/2=1√2(i21+i22)1/2