The correct option is C −x2+y2+ constant
Method I:
∵ it is given that f(z)=u+iv is analytic & we have als given that u=2xy i.e., real part is given so we can use case I of MILNE THOMSON method i.e.,
Step 1: ∂u∂y=2y≈ϕ1(x,y)
Step 2: ϕ1 (z,0)=0
Step 3: ∂u∂y=y≈ϕ2 (x,y)
Step 4: ϕ2 (z,0)=2z
Step 5: f(z)=∫[ϕ1(z,0)−iϕ2(z,0)]dz+c
=∫(0−i(2z)dz)+c=−iz2+c
=−i[x2−y2+2ixy]+c
u+iv=u+2xy+i(y2−x2)+c
So v=y2−x2+c
Method II:
∵ u=2xy⇒ux=2y & uy=2x
So, by C - R equation,
vy=2y & vx=−2x
Now, by Total Derivative Concept in v′
∵V=V(x,y)
So, dv=(∂v∂x)dx+(∂v∂y)dy
⇒v=∫−2xdx+∫2ydy+C
=−x2+y2+C
Method III:
f(x)=u(x,y)+i v(x,y)
u(x,y)=2xy⇒2xy⇒(∂v∂x)=2y
Using Cauchy-Riemann condition
∂u∂x=∂v∂y
v=y2+f(x) .....(i)
Again, ∂u∂y=−∂v∂x
2x=−f′(x) .... (ii)
⇒f(x)−x2+c
So using (i) v=y2−x2+c