The correct option is C cos−1(16)
The equations are
l+3m+5n=0...(1)
5lm−2mn+6nl=0...(2)
Put l=−3m−5n from equation (1) into equation (2)
∴5(−3m−5n)m−2mn+6n(−3m−5n)=0
⇒m2+3nm+2n2=0
⇒m2+(2n+n)m+2n2=0
m=−2n,−n
If m=−2n then from equation (1)
l=n
If m=−n then from equation (1)
l=−2n
Therefore, direction ratios are
(l,m,n)≡(n,−2n,n) and (−2n,−n,n)
⇒(l,m,n)≡(1,−2,1) and (−2,−1,1)
Angle between the lines
cosθ=a1a2+b1b2+c1c2√a21+b21+c21 √a22+b22+c22
=(1)(−2)+(−2)(−1)+(1)(1)√12+(−2)2+12 √(−2)2+(−1)2+12
⇒cosθ=16
⇒θ=cos−1(16)