Escape velocity ve=√2gRe
Given, speed of the satelliitev=38√2gRe=√9gRe32 --- (i)
Orbital velocity at height ′h′=√GMRe+h
=√GM.R2eR2e(Re+h)=√R2egRe+h ---(ii)
Equating (i) and (ii),
√9gRe32=√R2egRe+h
⇒9Re+9h=32Re
⇒h=239Re
Now, total energy at height ′h′ = total energy at the surface of the earth.
0−GMemRe=12mv2−GMemRe+h
12mv2=GMemRe−GMemRe+239Re
12mv2=2332GMemRe
⇒v=√2316GMeRe
⇒v=√2316gRe=√232 km/s
(∵ √gRe=8 km/sec)
∴n=2