Let x be the edge length
Given, Edge of cube is increasing at the rate of 3 cm/s
∴dxdt=3 cm/s
Volume of cube, V=x3
Differentiating w.r.t time,
dVdt=d(x3)dt
⇒dVdt=3x2.dxdt=9x2[∵dxdt=3]
Putting x=10
dVdt=9×102=900 cm3/s
Hence, volume of a cube is increasing at the rate of 900 cm3/s when edge length is
10 cm.