The correct option is A x2a2+y2b2=1
As per definition of ellipse, Let the point be S(h,k), focus be (p,q) and directrix be lx+my+n=0
⇒Distance between S & (p,q)Distance from lx+my+n=0=e
⇒(h−p)2+(k−q)2=e2(hl+mk+nl√l2+m2)2
⇒(l2+m2)[(h−p)2+(k−q)2]=e2(lh+mk+n)2
Here l=1, m=0, n=−ae, p=ae, q=0, we get,
[(h−ae)2+(k−0)2]=e2(h+(0)k+(−ae))2
⇒h2+k2=(eh)2+a2(1−e2)
⇒h2a2+k2a2(1−e2)=1
Given, b2=a2(1−e2)
∴x2a2+y2b2=1