An equation a0+a1x+a2x2+...+a99x99+x100=0 has root 99C0,99C1,99C2,...99C99 then
A
(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)2−2a98
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)2+2a98
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a98=2197+12198C99
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a98=2197−12198C99
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)2−2a98 Da98=2197−12198C99 sum of the roots 99C0+99C1+...+99C99=−a99a99=−299...(1) sum of the product of the two roots at a time is a98=∑0≤i<∑j≤9999Ci99Cj=1299∑i=099∑j=099Ci99Cj−1299∑i=0(99Ci)2=2197−12198C99...(2)(∵(1+x)2n=(1+x)n(x+1)ncomparing the coefficients of xn) From (1) and (2) (99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)2−2a98