wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

An equation a0+a1x+a2x2+...+a99x99+x100=0 has root 99C0,99C1,99C2,...99C99 then

A
(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)22a98
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)2+2a98
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a98=2197+12198C99
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a98=219712198C99
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A (99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)22a98
D a98=219712198C99
sum of the roots 99C0+99C1+...+99C99=a99a99=299...(1)
sum of the product of the two roots at a time is
a98=0i<j9999Ci99Cj=1299i=099j=099Ci99Cj1299i=0(99Ci)2=219712198C99...(2)((1+x)2n=(1+x)n(x+1)ncomparing the coefficients of xn)
From (1) and (2)
(99C0)2+(99C1)2+(99C2)2+...(99C99)2=(a99)22a98

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Quadratic Polynomials
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon