The correct option is B 2(cosα−sinα+1)−1
The circle x2+y2−2gx+2gy+g2=0 touches the co-ordinate axes.
Now, since it also touches the line xcosα+ysinα=2, the perpendicular distance from the centre to the line must be the radius.
Hence, gcosα−gsinα−2√cos2α+sin2α=±g
⇒gcosα−gsinα−2=±g
⇒g=2cosα−sinα+1 or g=2cosα−sinα−1