The correct options are
A x2+y2−2gx−2gy+g2=0 where g=2(cosα+sinα+1)
B x2+y2−2gx−2gy+g2=0 where g=2(cosα+sinα−1)
C x2+y2−2gx+2gy+g2=0 where g=2(cosα−sinα+1)
D x2+y2−2gx−2gy+g2=0 where g=2(cosα−sinα−1)
Equation of a circle which touches the coordinate axes can be written as
(x−g)2+(y±g)2=g2,g being a variable.
If this circle touches the line xcosα+ysinα=2
we get gcosα±gsinα−2=±g⇒g=2cosα±sinα±1
so the (a),(b),(c) and (d) are all correct.