An equation of the line that passes through (10,−1) and is normal to y=x24−2 is
Open in App
Solution
4y=x2−8
Differentiating w.r. to x 4dydx=2x dydx∣∣∣(x1,y1)=x12
Slope of Normal =−2x1
But slope of normal =y1+1x1−10 ∴y1+1x1−10=−2x1 ⇒x1y1+x1=−2x1+20 ⇒x1y1+3x1=20
Substituting y1=x21−84 x1(x21−84+3)=20 ⇒x1(x21−8+12)=80 ⇒x1(x21+4)=80 ⇒x31+4x1−80=0 ⇒(x1−4)(x21+4x1+20)=0
Hence x1=4;y1=2 P=(4,2), A(10,−1)
Equation of PA is: y+1=−12(x−10) ⇒2y+2=−x+10 ∴x+2y−8=0