Given: ΔABC is an equilateral triangle of side 6 cm.
Construct an altitude from vertex A.
We know that altitude of an equilateral triangle bisects the opposite side i.e., BD = DC = 3 cm.
Altitude bisects the chord BC, so it will pass through the centre of the circle.
In ΔABD
(AB)2=(BD)2+(AD)2
⟹(6)2=(3)2+(r+x)2
⟹36=9+(r+x)2
⟹(r+x)=3√3) ... (1)
In ΔBOD
⟹(BO)2=(OD)2+(BD)2
⟹(r)2=(x)2+(3)2
⟹(r)2−(x)2=9
⟹(r+x)(r−x)=9
We know that (r+x)=3√3
∴(r−x)=9r+x=93√3
⟹r−x=√3 ... (2)
Adding (1) and (2), we get
r=2√3 cm