Using 1st law of thermodynamics:
dQ=dU+dW
We can write:
c=dQndT=ncvdT+PdVndT=cv+PdVndT
Here, c is molar heat capacity.
Using ideal gas equation:
PV=nRT⇒P=nRTV
So, c=cv+PdVndT⇒c=cv+R.dV.TV.dT
Now using PV5/2=Constant, we will find out dV.TV.dT.
Since,
PV5/2=knRTV5/2V=knRTV3/2=k
Now differentiating this term we get:
nRV3/2dT+nRT.32V1/2.dV=0
nR.V3/2dT=−32.nRT.V1/2.dV
−23=dV.TV.dT
So, c=cv+R.dV.TV.dT⇒c=cv−2R3
⇒x=2