Given:
L=2 H ; R=8 Ω ; E=8 V
The energy stored in the magnetic field at time t is,
U=12Li2=12Li20⎛⎜⎝1−e−tτ⎞⎟⎠2 .......(1)
⎡⎢⎣∵ i=i0⎛⎜⎝1−e−tτ⎞⎟⎠⎤⎥⎦
The rate at which the energy is stored is, P=dUdt
Therefore, differentiating the (1) we get
P=dUdt=2×12Li20⎛⎜⎝1−e−tτ⎞⎟⎠⎛⎜⎝−e−tτ⎞⎟⎠(−1τ)
P=Li20τ⎛⎜⎝e−tτ−e−2tτ⎞⎟⎠ ......(2)
The rate at which energy stored will be maximum when dPdt=0
Therefore, differentiating eq. (2) and equating to zero, we get
dPdt=Li20τ⎛⎜
⎜⎝−1τe(−tτ)+2τe⎛⎝−2tτ⎞⎠⎞⎟
⎟⎠=0
⇒ e−tτ=12
Putting this value in (2),
Pmax=Li20τ(12−14)
Pmax=LE24R2(LR)=E24R .......(3)
Putting the values in (3) we get,
Pmax=E24R=428
∴Pmax=168=2 W
Note: Pmax is independent of the inductance of the circuit.