Define a relation based on the given statement.
R={(m,n):m=nk where m,n,k ϵ Z}
Check Reflexivity
If (m,m) ϵ R, then m=mk⇒k=1 ϵ Z
∴R is Reflexive.
Check whether R is symmetric
Assuming that m≠n
Let (m,n) ϵ R⇒m=nk
⇒n=(1k)m (∵1k ∉ z, if m≠n)
⇒(n,m) ∉ R
Therefore, R is not symmetric
Check whether R is transitive
Let (m,n) ϵ R and (n,p) ϵ R ⇒m=nk1 and n=pk2
⇒m=pk1k2
⇒m=pk (Let k=k1k2)
⇒(m,p) ϵ R
Therefore, R is transitive
Hence, the given statement is false.